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Abstract. Topic modeling is a widely used approach for clustering text
documents, however, it possesses a set of parameters that must be deter-
mined by a user, for example, the number of topics. In this paper, we
propose a novel approach for fast approximation of the optimal topic
number that corresponds well to human judgment. Our method com-
bines the renormalization theory and the Renyi entropy approach. The
main advantage of this method is computational speed which is crucial
when dealing with big data. We apply our method to Latent Dirichlet
Allocation model with Gibbs sampling procedure and test our approach
on two datasets in different languages. Numerical results and compari-
son of computational speed demonstrate a significant gain in time with
respect to standard grid search methods.
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1 Introduction

Nowadays, one of the widely used instruments for analysis of large textual collec-
tions is probabilistic topic modeling (TM). However, when using topic modeling
in practice, the problems of selecting the number of topics and values of hyper-
parameters of the model arise since these values are not known in advance by
practitioners in most applications, for instance, in many tasks of sociological
research. Also, the results of TM are significantly influenced by the number of
topics and inappropriate hyperparameters may lead to unstable topics or to
topic compositions that do not accurately reflect the topic diversity in the data.
The existing methods to deal with this problem are based on grid search. For
instance, one can use standard metrics such as log-likelihood [1] or perplexity [2]
and calculate the values of these metrics for different values of model parame-
ters and then choose the parameters which lead to the best values of considered
metrics. Another popular metric is semantic (topic) coherence [3]. A user has to
select the number of most probable words in topic to be used for topic coherence
calculation, then topic coherence is calculated for individual topics. Let us note
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that there is no clear criterion for selecting the number of words and the authors
[3] propose to consider 5–20 terms. Values of individual topic coherence are then
aggregated to obtain a single coherence score [4,5]. After that one can apply a
grid search for determining the best values of model parameters with respect to
the coherence score. However, the above methods are extremely time-consuming
for big data which is why optimization of the procedure of topic number selection
is of importance.

The computational complexity of the existing grid-search-based methods
calls for greedy solutions that can speed up the process without substantial
loss of TM quality. In this work, we propose a significantly faster solution for an
approximation of an optimal number of topics for a given collection. We refer to
the number of topics determined by encoders as the ’optimal number’ of topics.
Our approach is based on renormalization theory and on entropic approach [7],
which, in turn, is based on the search for a minimum Renyi entropy under vari-
ation of the number of topics. Details of the entropic approach are described in
Subsect. 2.3. The author of [7] demonstrated that the minimum point of Renyi
entropy lies approximately in the region of the number of topics identified by
users. This approach also requires a grid search for model optimization, but the
search itself is optimized based on the previous research and theoretical consid-
erations. In work [8], it was demonstrated that the density-of-states function (to
be defined further) inside individual TM solutions with different topic numbers
is self-similar in relatively large intervals of the number of topics, and such inter-
vals are multiple. Based on these facts and taking into account that big data
allow applying methods of statistical physics, we conclude that it is possible to
apply the renormalization theory for fast approximation of the optimal number
of topics for large text collections. This means that calculation reduction in our
approach is based on the mentioned self-similarity. We test our approach on two
datasets in English and Russian languages and demonstrate that it allows us
to quickly locate the approximate value of the optimal number of topics. While
on the dataset consisting of 8,624 documents our approach takes eight minutes,
the standard grid search takes about an hour and a half. Therefore, for huge
datasets gain in time can vary from days to months. We should especially note
that renormalization-based methods are suitable for finding approximate values
of T only. However, the exact value can be found afterwards by grid search on
a significantly smaller set of topic solutions, which compensates for the approx-
imate character of the renormalization-based search.

Our paper consists of the following sections. Subsection 2.1 describes basic
assumptions of probabilistic topic modeling and formulation of the task of topic
modeling. Subsection 2.2 gives an idea of renormalization theory which is widely
used in physics. Subsection 2.3 reviews Renyi entropy approach which was pro-
posed in [7,9]. Subsection 2.4 describes findings of work [8] which are neces-
sary for the application of renormalization theory to topic modeling. Section 3
describes the main ideas of our approach and its application to Latent Dirichlet
Allocation model (LDA). Section 4 contains numerical experiments on the renor-
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malization of topic models and comparison of obtained approximations of the
optimal number of topics to the ground truth. Section 5 summarizes our findings.

2 Background

2.1 Basics of Topic Modeling

Topic modeling takes a special place among machine learning methods since this
class of models can effectively process huge data sets. In the framework of TM,
several assumptions are expected to be met. First, the dataset contains a fixed
number of topics. It means that a large matrix of occurrences of words in doc-
uments can be represented as a product of two matrices of smaller size which
represent the distribution of words by topics and distribution of topics by doc-
uments, correspondingly. Second, documents and words are the only observable
variables. Hidden distributions are calculated based on these variables. Thus, a
document collection can be characterized by three numbers: D,W, T , where D is
the number of documents, W is the number of unique words in the dataset, T is
the number of topics, which is usually selected by users of TM. Third, currently,
TM is constructed on the basis of the ‘bag of words’ concept. It means that
topic models do not take into account the order of words in documents. Thus,
probability of a word w in a document d can be written in the following form
[10,11]: p(w|d) =

∑
t p(w|t)p(t|d) ≡ ∑

t φwtθtd, where {p(w|t) ≡ φwt} refers to
the distribution of words by topics, {p(t|d) ≡ θtd} is the distribution of topics by
documents. A more detailed description of TM formalism can be found in [7,9].
In fact, finding the hidden distributions in large text collection is equivalent to
understanding what people write about without reading a huge number of texts,
that is, to identifying topics that are discussed in the collection.

2.2 Basics of Renormalization Theory

Renormalization is a mathematical formalism that is widely used in different
fields of physics, such as percolation analysis and phase transition analysis. The
goal of renormalization is to construct a procedure for changing the scale of the
system under which the behavior of the system preserves. Theoretical founda-
tions of renormalization were laid in works [12,13]. Renormalization was widely
used and developed in fractal theory since fractal behavior possesses the property
of self-similarity [14,15]. To start a brief description of renormalization theory,
let us consider a lattice consisting of a set of nodes. Each node is characterized
by its spin direction, or spin state. In turn, a spin can have one of many possible
directions. Here, the number of directions is determined by a concrete task or a
model. For example, in the Ising model, only two possible directions are consid-
ered; in the Potts model, the number of directions can be 3–5 [16]. Nodes with
the same spin directions constitute clusters. The procedure of scaling or renor-
malization follows the block merge principle where several nearest nodes are
replaced by one node. The direction of the new spin is determined by the direc-
tion of the majority of spins in the block. A block merge procedure is conducted
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on the whole lattice. Correspondingly, we obtain a new configuration of spins.
The procedure of renormalization can be conducted several times. Following the
requirement of equivalence between the new and the previous spin configurations,
it is possible to construct a procedure of calculation of parameters and values of
critical exponents, as described in [17]. Let us note that consistent application
of renormalization of the initial system leads to approximate results, however,
despite this fact, this method is widely used since it allows to obtain estimations
of critical exponents in phase transitions, where standard mathematical models
are not suitable. Renormalization is applicable if scale invariance is observed.
Scale invariance is a feature of power-law distributions. Mathematically, self-
similarity (or scale invariance) is expressed in the following way. Assume that
f(x) = cxα, where c, α are constants. If we transform x → λx (it corresponds
to scale transformation) then f(λx) = c(λx)α := βxα, where β = cλα, i.e., scale
transformation leads to the same original functional dependence but with a dif-
ferent coefficient. In concrete applications, the parameter of power-law, α, can
be found by different algorithms, such as ‘box counting’ or others.

2.3 Entropy-Based Approach

The entropic approach for analysis of topic models was proposed in [7,9] and is
based on a set of principles. A detailed discussion of these principles can be found
in [7,9]. In this work, we would like to briefly discuss some important observations
related to the entropic approach which would be necessary for the formulation
of our renormalization procedure. First, a document collection is considered as
a statistical system, for which the free energy can be determined. Let us note
that free energy is equivalent to Kullback-Leibler divergence. Further, the free
energy (and, correspondingly, Kullback-Leibler divergence) can be expressed in
terms of Renyi entropy through partition function (Zq) [9]:

Zq = ρ(P̃ )q,

where q = 1/T is a deformation parameter,

ρ = N/(WT ) (1)

is the ‘density-of-states’ function of the whole topic solution, N is the number
of highly probable words with p(w|t) > 1/W , P̃ =

∑
w,t p(w|t) · 1{p(w|t)>1/W}

with 1{·} being an indicator function. Thus, Renyi entropy of a topic solution
can be expressed in the following form:

SR
q =

ln(Zq)
q − 1

. (2)

We would like to notice that the above expression of Renyi entropy is in Beck
notation [18].

Since the procedure of TM shifts the information system from a state of high
entropy to a state of low entropy, the calculation of deformed Renyi entropy
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after the TM allows estimating the effect of model hyperparameters and the
number of topics on the results of TM. It was demonstrated [7,9] that minimum
entropy corresponds to the number of topics which was selected by users in the
process of dataset labeling. It allows us to link the procedure of searching for
a minimum deformed entropy with the process of data labeling, which plays a
crucial role in machine learning models. However, searching for the minimum
Renyi entropy demands exhaustive search over the set of hyperparameters and
numbers of topics which is a time-consuming process. A partial solution to this
problem can be found through the analysis of self-similarity in topic solutions
under variation of the number of topics.

2.4 Self-similar Behaviour in Topic Models

As it was shown in [8], topic models have the properties of self-similar behavior
under variation of the number of topics. Such behavior is expressed in the fact
that the ‘density-of-states’ function satisfies ρ(λ 1

T ) = β(1/T )α with some β and
α, and, therefore is linear in bi-logarithmic coordinates. However, such behavior
is observed only in some ranges of the number of topics. Moreover, the incli-
nation angles of linear pieces of the ‘density-of-states’ function are different in
different regions that correspond to different fractal dimensions. The determina-
tion of the inclination angles was implemented according to the following steps:
1) Multidimensional space of words and topics is covered by a grid of fixed size
(matrix Φ = {φwt}). 2) The number of cells satisfying φwt > 1/W is calculated.
3) The value of ρ for the fixed number of topics T is calculated according to
Eq. (1). 4) Steps 1, 2, 3 are repeated with cell sizes (i.e. the number of topics)
being changed. 5) A graph showing the dependence of ρ in bi-logarithmic coor-
dinates is plotted. 6) Using the method of least squares, the slope of the curve
on this plot is estimated, the value of the slope is equal to the value of fractal
dimension calculated according to the following relation: D = ln(ρ)

ln( 1
T )

.
In work [8], two datasets in different languages were tested under varia-

tion of the number of topics and it was demonstrated that there are large
regions where the density-of-states function self-reproduces, i.e., fractal behavior
is observed. Areas between such regions of self-similarity are transition regions.
In such regions, change in the density-of-states function happens, i.e. the char-
acter of self-similarity changes. Work [8] demonstrates that transition regions
correspond to human mark-up. Regions of self-similarity do not lead to changes
in the structure of solutions of TM, therefore, it is sufficient to find transition
regions in order to determine the optimal topic number in a collection. The dis-
advantage of this approach is in its computational complexity both in terms of
time and computational resources: to find transition regions one needs to run
topic modeling many times with multiple values of topic numbers. Since there
are regions of self-similarity, we propose to apply renormalization theory to speed
up the search for the topic number optimum.
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3 Method

3.1 Application of Renormalization in Topic Modeling

In this subsection, we explain the main idea of renormalization for the task
of topic modeling (its application for Latent Dirichlet Allocation model with
Gibbs sampling procedure will be demonstrated in Subsect. 3.2). Recall that the
output of TM contains matrix Φ = {φwt} of size W ×T . Here, we consider a fixed
vocabulary of unique words, therefore, the scale of renormalization depends only
on parameter q = 1/T . Renormalization procedure is a procedure of merging
two topics into one new topic. As a result of the merging procedure, we obtain
a new topic t̃ with its topic-word distribution satisfying

∑
w φwt̃ = 1. Since the

calculation of matrix Φ depends on a particular topic model, the mathematical
formulation of renormalization procedure is model-dependent. Also, the results
of merging depend on how topics for merging were selected. In this work, we
consider three principles of selecting topics for merging:

– Similar topics. Similarity measure can be calculated according to Kullback-
Leibler divergence [19]: KL(t1, t2) =

∑
w φwt1 ln(φwt1

φwt2
) =

∑
w φwt1 ln(φwt1)−

−∑
w φwt1 ln(φwt2), where φwt1 and φwt2 are topic-word distributions, t1 and

t2 are topics. Then two topics with the smallest value of KL divergence are
chosen.

– Topics with the lowest Renyi entropy. Here, we calculate Renyi entropy for
each topic individually according to Eq. (2), where only probabilities of words
in one topic are used. Then we select a pair of topics with the smallest values
of Renyi entropy. As large values of Renyi entropy correspond to the least
informative topics, minimum values characterize the most informative topics.
Thus, we choose informative topics for merging.

– Randomly chosen topics. Here, we generate two random numbers in the range
[1, T̂ ], where T̂ is the current number of topics, and merge topics with these
numbers. This principle leads to the highest computational speed.

3.2 Renormalization for Latent Dirichlet Allocation Model

Let us consider Latent Dirichlet Allocation model with Gibbs sampling algo-
rithm. This model assumes that word-topic and topic-document distributions
are described by symmetric Dirichlet distributions with parameters α and β
[20], correspondingly. Matrix Φ is estimated by means of Gibbs sampling algo-
rithm. Here, values α and β are set by the user. Calculation of Φ consists of
two phases. The first phase includes sampling and calculation of a counter cwt,
where cwt is the number of times when word w is assigned to topic t. The second
phase contains recalculation of Φ according to

φwt =
cwt + β

(
∑

w cwt) + βW
. (3)

For our task of renormalization, we use the values of counters cwt and Eq. (3).
Notice that counters cwt form matrix C = {cwt}, and this is the matrix which
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undergoes renormalization. Based on matrix C, renormalized version of matrix Φ
is then calculated. Algorithm of renormalization consists of the following steps:

1. We choose a pair of topics for merging according to one of the principles
described in Subsect. 3.1. Let us denote the chosen pair of topics by t1 and
t2.

2. Merging of selected topics. We aim to obtain the distribution of the new
topic t̃ resulting from merging topics t1 and t2, which would satisfy Eq. (3).
Merging for matrix C means summation of counters cwt1 and cwt2 , namely,
cwt̃ = cwt1 + cwt2 . Then, based on new values of counters, we calculate φwt̃

in the following way (analogous to Eq. (3)):

φwt̃ =
cwt1 + cwt2 + β

(
∑

w cwt1 + cwt2) + βW
. (4)

One can easily see that new distribution φ·t̃ satisfies
∑

w φwt̃ = 1. Then, we
replace column φwt1 by φwt̃ and delete column φwt2 from matrix Φ. Note that
this step leads to decreasing the number of topics by one topic, i.e., at the
end of this step we have T − 1 topics.

Steps 1 and 2 are repeated until there are only two topics left. At the end of
each step 2, we calculate Renyi entropy for the current matrix Φ according to
Eq. (2). Then we plot Renyi entropy as a function of the number of topics and
search for its minimum to determine the approximation of the optimal number of
topics. Thus, our proposed method incorporates Renyi entropy-based approach
and renormalization theory. Moreover, it does not require the calculation of many
topic models with different topic numbers, but it only requires one topic solution
with large enough T .

4 Numerical Experiments

For our numerical experiments, the following datasets were used:

– Russian dataset (RD) from the Lenta.ru news agency [21]. Each document of
the dataset was assigned to one of ten topic classes by dataset provider. We
consider a subset of this dataset which contains 8,624 documents with a total
number of 23,297 unique words (available at [22]).

– English dataset (ED) is the well-known ‘20 Newsgroups’ dataset [23]. It con-
tains 15,404 English documents with the total number of 50,948 unique words.
Each of the documents was assigned to one or more of 20 topic groups. More-
over, it was demonstrated [24] that 14–20 topics can represent this dataset.

These datasets were used for topic modeling in the range [2, 100] topics in the
increments of one topic. Hyperparameters of LDA model were fixed at the val-
ues: α = 0.1, β = 0.1. Research on the optimal values of hyperparameters for
these datasets was presented in work [9], therefore, we do not vary hyperparam-
eters in our work. For both datasets, the topic solution on 100 topics underwent
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renormalization with successive reduction of the number of topics to one topic.
Based on the results of consecutive renormalization, curves of Renyi entropy
were plotted as functions of the number of topics. Further, the obtained Renyi
entropy curves were compared to the original Renyi entropy curves [7] obtained
without renormalization.

4.1 Russian Dataset

Figure 1 demonstrates curves of Renyi entropy, where the original Renyi entropy
curve was obtained by successive topic modeling with different topic numbers
(black line) and the other Renyi entropy curves were obtained from five different
runs of the same 100-topic model by means of renormalization with a random
selection of topics for merging. Here and further, the minima are denoted by
circles in the figures. The minimum of the original Renyi entropy corresponds
to 8 topics, minima of renormalized Renyi entropy correspond to 12, 11, 11, 17
and 8 topics, depending on the run. Accordingly, the average minimum of five
runs corresponds to 12 topics. As it is demonstrated in Fig. 1, renormalization
with merging of random topics, on one hand, provides correct values of Renyi
entropy on the boundaries, i.e., for T = 2 and T = 100, on the other hand, the
minimum can fluctuate in the region [8, 17] topics. However, on average, random
merging leads to the result which is quite similar to that obtained without renor-
malization. Figure 2 demonstrates renormalized Renyi entropy based on merging
topics with the lowest Renyi entropy. It can be seen that for this principle of
selecting topics for merging, renormalized Renyi entropy curve is flat around
its minimum (unlike the original Renyi entropy curve) which complicates fining
this minimum. The flat area around the global minimum is located in the region
of 10–18 topics. At the same time, at the endpoints of the considered range of
topics the renormalized Renyi entropy curve has values similar to those of the
original Renyi entropy, i.e. for T = 2 and T = 100.

Figure 3 demonstrates the behavior of renormalized Renyi entropy when the
principle of selecting topics for merging is based on KL divergence. It shows that
this principle leads to the worst result: the renormalized Renyi entropy curve has
a minimum that does not correspond to the optimal number of topics. However,
just like all other versions of renormalized entropies, it behaves “correctly” on
the boundaries, i.e. it has maxima for T = 2 and T = 100.

4.2 English Dataset

The results obtained on this dataset are similar to those based on the Rus-
sian dataset. Figure 4 demonstrates five runs of renormalization with randomly
selected topics for merging on the English dataset. One can see that the curves
are very similar to each other and to the original Renyi entropy curve. The
minimum of the original Renyi entropy corresponds to 14 topics, minima of
renormalized Renyi entropy correspond to 17, 11, 14, 23 and 12 topics, depend-
ing on the run of renormalization. Accordingly, the average minimum of five runs
corresponds to 15 topics. Figure 5 demonstrates the renormalized Renyi entropy
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Fig. 1. Renyi entropy vs the number of topics T (RD). Original Renyi entropy – black.
Renormalized Renyi entropy with random merging of topics: run 1 – red; run 2 – green;
run 3 – blue; run 4 – magenta; run 5 – yellow. ()

Fig. 2. Renyi entropy vs the number of topics T (RD). Original Renyi entropy – black;
renormalized Renyi entropy (topics with the lowest Renyi entropy merged) – red.

curve, where topics with the lowest Renyi entropy were merged. The minimum
of the renormalized entropy corresponds to 16 topics. On average, this type
of renormalization leads to slightly lower values of Renyi entropy compared to
the original Renyi entropy. Figure 6 demonstrates renormalized Renyi entropy,
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Fig. 3. Renyi entropy vs the number of topics T (RD). Original Renyi entropy – black;
renormalized Renyi entropy (similar topics with the lowest KL divergence merged) –
red.

Fig. 4. Renyi entropy vs the number of topics T (ED). Original Renyi entropy – black.
Renormalized Renyi entropy with random merging of topics: run 1 – red; run 2 – green;
run 3 – blue; run 4 – magenta; run 5 – yellow.

where topics were merged based on KL divergence between them. Again, we can
see that this type of merging leads to the worst result. The renormalized Renyi
entropy has a minimum at T = 43 that does not correspond either to the human
mark-up or to the minimum of the original Renyi entropy.
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Fig. 5. Renyi entropy vs the number of topics T (ED). Original Renyi entropy – black;
renormalized Renyi entropy (topics with the lowest Renyi entropy merged) – red.

Fig. 6. Renyi entropy vs the number of topics T (ED). Original Renyi entropy – black;
renormalized Renyi entropy (similar topics with the lowest KL divergence merged) –
red.

4.3 Comparison of Computational Speed of Original and
Renormalized Models

Table 1 demonstrates computational speed for a sequence of topic models and
for renormalization. All calculations were performed on the following equipment:
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Table 1. Computational speed.

Dataset TM
simulation
and
calculation of
Renyi entropy

Renormalization
(random)

Renormalization
(minimum
Renyi entropy)

Renormalization
(minimum KL
divergence)

Russian
dataset

90min 8 min 16 min 140 min

English
dataset

240min 23 min 42 min 480 min

notebook Asus, Intel Core I7 - 4720 HQ CPU 2.6 GHz, Ram 12 Gb, Opera-
tion system: Windows 10 (64 bits). Calculations on both datasets demonstrate
that renormalization with randomly selected topics for merging is the fastest.
Moreover, this type of renormalization leads to the most similar behavior of
the renormalized Renyi entropy curve to the original Renyi entropy. Also, the
computational speed for this type of renormalization is almost 11 times higher
than that of the original Renyi entropy. Renormalization based on merging top-
ics with the lowest KL divergence is the slowest: such calculation is even more
time-consuming than regular grid-search calculation with a reasonable number
of iterations. Renormalization in which topics with the lowest Renyi entropy are
merged takes the second place: its computation is five times faster than that of
the original Renyi entropy.

Summarizing the obtained results, we conclude that renormalization with
randomly selected topics for merging could be an efficient instrument for the
approximation of the optimal number of topics in document collections. However,
it is worth mentioning that one should run such renormalization several times
and average the obtained number of topics.

5 Conclusion

In this work, we have introduced renormalization of topic models as a method
of fast approximate search for the optimal range of T in text collections, where
T is the number of topics into which a topic modeling algorithm is supposed
to cluster a given collection. This approach is introduced as an alternative to
computationally intensive grid search technique which has to obtain solutions
for all possible values of T in order to find the optimum of any metric being
optimized (e.g. entropy). We have shown that, indeed, our approach allows to
estimate the range of the optimal values of T for large collections faster than
grid search and without substantial deviation from the “true” values of T , as
determined by human mark-up.

We have also found out that some variants of our approach yield better
results than others. Renormalization involves a procedure of merging groups of
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topics, initially obtained with the excessive T , and the principle of selection of
topics for merge has turned out to significantly affect the final results. In this
work, we considered three different merge principles that selected: 1) topics with
minimum Kullback-Leibler divergence, 2) topics with the lowest Renyi entropy,
or 3) random topics. We have shown that the latter approach yielded the best
results both in terms of computational speed and accuracy, while Renyi-based
selection produced an inconvenient wide flat region around the minimum, and
the KL-based approach worked slower than non-renormalized calculation. Since
on our collections, random merge produced speed gain of more than one hour,
corpora with millions of documents are expected to benefit much more, in the
numbers amounting to hundreds of hours.

A limitation of the renormalization approach is that it is model-dependent,
i.e. the procedure of merge of selected topics depends on the model with which
the initial topic solution was obtained. However, although we have tested our
approach on topic models with Gibbs sampling procedure only, there seem to
be no theoretical obstacles for applying it to other topic models, including the
Expectation-Maximization algorithm. This appears to be a promising direction
for future research deserving a separate paper.

Acknowledgments. The study was implemented in the framework of the Basic
Research Program at the National Research University Higher School of Economics
(HSE) in 2019.
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